Bplustree.py
Revision as of 14:03, 29 February 2008 by PeterHarding (talk | contribs) (New page: =Script= <pre> """ B+tree implementation. ====================== B+ trees are an efficient index structure for mapping a dictionary type object into a disk file. All keys for these dict...)
Script
""" B+tree implementation. ====================== B+ trees are an efficient index structure for mapping a dictionary type object into a disk file. All keys for these dictionary structures are strings with a fixed maximum length. The values can be strings or integers (often representing seek positions in a secondary file) depending on the implementation. B+ trees can be useful for storing large mappings on disk in such a way that a small number of keys/values can be retrieved very quickly (with very few disk accesses). B+ trees can also be useful for sorting a very large number (millions) of records by unique string key values. In this implementation all keys must not exceed the maximum length for a given tree. For string values there is no limitation on size of content. Note that in my tests updates are 2-3 times slower than retrieves, except for walking which is much faster than normal retrieves. As an add-on this module also provides a dbm compatible interface that permits arbitrary length keys and values. See below. Provided here are several implementations: BplusTree(): defines a mapping from strings to integers. caching_BPT(): subclass of BplusTree that caches key,value pairs already seen. This one cannot be updated. Construct a compatible index file using BplusTree and for read only access that touches a manageable number of keys, reopen the file using caching_BPT. SBplusTree(): defines a mapping from strings to strings. Updatable, but overwrites or deletions will leave "unreachable garbage" in the "value space" of the index file. Use recopy_sbplus() to recopy the file, eliminating the garbage. caching_SBPT(): analogous to caching_BPT, but mapping to strings. File creation: ============== To create an index file do the following: file = open(filename, "w+b") B = SBplusTree(file, seek_position, nodesize, keymax) B.startup() where seek_position is the seek_position where to "start" the tree (usually the start of file, 0), nodesize is the number of keys to keep at each node of the tree (pick an even number between 2 and 255), and keymax is the maximum size for the string keys in the mapping. When choosing nodesize remember that larger nodesizes make Python do more work and the file system do less work. I think 212 is probably a pretty good number. Of course choose keymax to be as large as you will need. A too large key size, however, may waste considerable space in the file. Now that you have a tree you can populate it with values just like a dictionary. B["this"] = "that" B["willy"] = "wonka" x = B["this"] del B["this"] print len(B) ... f.close() The supported dictionary operations are indexed retrieval B[k], indexed assignment B[k] = v, key deletion del B[k] and length len(B). Retrieval and deletion will raise KeyError on absent key. Assignment will raise ValueError if the key is too large. B.keys(), B.values(), B.items() are not directly supported, but see "Walking" below. Note that the "basic" B-plus tree implementations only accept and return integers as values. The SB-plus implementation will accept anything as values, but will use the str(x) function to convert them to a string before storing the value in the file. The value returned will always be the string value stored. IE B["okeydoke"] = 23 print `B["okeydoke"]` prints "'23'", with the quotes. The controlling application must control the serialization/deserialization of values if it needs to store something other than strings. Read only file access: ====================== Once an index file exists it can be re-opened in "read only" mode. f = open(filename, "rb") B = caching_SBPT(f) B.open() print B["willy"] Note that the configuration parameters for the tree are determined from a "file header". Note however that a file written to store integers using BplusTree should not be opened for strings using SBplusTree or undefined and undesirable behaviour will result. Opening an SBplusTree as a BplusTree is not advisable either. If the seek position for the start of the tree is anything other than 0, it must be specified: B = caching_SBPT(f, position) or undefined behaviour will result. In this mode, retrieval and walking are permitted, but attempts to modify the structure will cause an exception. In this mode the programmer may prefer to use the "caching" versions if they expect to retrieve the same keys many times and if the number of keys to touch is not huge (say, in the millions). Re-open for modification: ========================= An existing index file can also be reopened for modification. f = open(filename, "r+b") B = SBplusTree(f) B.open() B["this"] = "is fun!" ... f.close() Again, modifications are disallowed for cached trees. Walking: ======== One of the neat features of B-plus trees is that they keep their keys in sorted order. Hence it is easy and efficient to retrieve the keys/values sorted by the keys, and also to do range queries. To support this feature the tree implementations provide a "walker" interface. walker = tree.walker(lowerkey, includelower, upperkey, includeupper) while walker.valid: print (walker.current_key(), walker.current_value()) walker.next() walker.first() Or to traverse all pairs in key-sorted order walker = tree.walker() while walker.valid: print (walker.current_key(), walker.current_value()) walker.next() walker.first() The lowerkey/upperkey parameters indicate where to start/end walking (interpreted as the beginning/end if they are omitted or set to None) and includelower indicates whether to include the lower value if it is present in the tree, if not the next greater key will be the start position. For example to walk from key "m" (or just past it if absent) to the end: w = tree.walker("m", 1) or to walk between "mzzz" and "nzzz" not inclusive: w = tree.walker("mzzz", 0, "nzzz", 0) or walk from the beginning to "m", not inclusive w = tree.walker(None, None, "m", 0) Here w.current_key() and w.current_value() retrieve the current key and value respectively, w.next() moves to the next pair, if there is one and w.valid indicates whether there is a current pair, and w.first() resets the walker to the first pair, if there is one. At initialization the walker is already at the first pair, if it exists. Multiaccess optimizations: ========================== To make updates and retrievals run faster you can enable/disable a tree-global least-recently-used fifo mechanism which reduces reads and writes, but be *sure* to disable it before closing any BTree file that has been modified, or the tree may well become corrupt try: B.enable_fifo() do_updates(B) finally: B.disable_fifo() The fifo may also improve performance for read only access, but it is not important to disable the mechanism later. The optimizations help most when key accesses are localized. (ie, a bunch of inserts with keys starting "abc..." or 10000 inserts in [almost] key-sorted order). For only one access, it's no help at all! The fifo mechanism will not help for walking, so don't do it if you will only walk a portion of the tree once. You might want to try putting various values as the optional argument to enable_fifo, eg, B.enable_fifo(1000) (but that's probably past the diminishing returns point...). Large fifos will consume lots of "core" memory. Trash compacting ================ The functions recopy_bplus(f1, f2) and recopy_sbplus(f1, f2) recopy open "rb" file f1 to (open "w+b") file f2 for BplusTrees and SBplusTrees respectively. The copy f2 will have no "garbage" and almost all leaf nodes will be full. This can result in reducing file size by about 1/3. Both files must have headers at seek 0 and hold nothing but the tree nodes and tree data. Also look at recopy_tree(t1, t2). DBM compatibility ================= As an application of SBplusTree this module also provides a plug-compatible implementation of the standard python dbm style functionality, except that the "mode" parameter is not supported on initialization. See the Python Lib manual entry on dbm. Both keys and values may be of *arbitrary* length in this case, but keys are not kept in key-sorted order and overwrites and key collisions will result in unused garbage in the file (keys and values occur as SBplustree "values" using a PORTABLE bucket hashing scheme). d = dbm(filename, flag) creates a dictionary like structure with d[key]=value, x=d[key], d.has_key(key), del d[key], len(d), and d.keys(). Also after any modification be sure that d gets explicitly closed d.close() or the file *may* become corrupt. Also, d.copy(otherfilename, "c") will create a more compact copy of d in another file with garbage discarded. The dbm implementation uses a very large fifo, so many accesses may consume a lot of "core" memory. DBM comparison ============== An alternative to this module is gdbm or dbm for file indexing -- both supported by available Python extension modules. Expect dbm to be generally faster than this module, but remember: - dbm doesn't do key-sorted walking. - dbm often isn't portable across machines. - dbm isn't written in Python (ie, requires an extension module). - dbm sometimes doesn't allow arbitrary value lengths (but gdbm allows arbitrary length keys and values...) whereas this module does/is. I don't know precisely how much faster dbm is, but for some types of use it may turn out to actually be slower, for all I know. Please let me know! Probably the most compelling advantage is that the index files generated by this module are portable across platforms. Fun === For fun or debugging try tree.dump(). There is also a test suite for the module at the bottom (test() and retest()) which create a test index called "test" in the current directory. Also testdbm(). Caveats: ======== NOTE: only the standard string ordering is supported for walking at present. This could be fixed... WARNING: Never modify a tree while it is being walked. Always recreate all walkers after a tree modification. NEVER open the same tree for modification twice! ALWAYS make sure a modified tree has disabled the fifo and the file has been closed before reopening the tree. WARNING: This implementation has no support for concurrent modification. It is designed for "write once by one process", "read many by (possibly) several processes, but not with concurrent modification." WARNING: If during modification any exception other than a KeyError/ValueError is not caught, the indexed file structure *may* become corrupt (because some operations completed and others didn't). Walking all values of an index or B.dump() may detect some corrupt states (***Note I should write a sanity-check routine***) WARNING: As noted above an overwrite or delete for a SBTree (mapping to strings) will leave unreachable junk in the "value space" of the index. See above. This code is provided for arbitrary use, but without warrantee of any kind. At present it seems to work, but I'll call it an beta until it's better tested. Aaron Watters, arw@pythonpros.com http://starship.skyport.net/crew/aaron_watters http://www.pythonpros.com """ import string nilseek = -1 from marshal import dumps sequence_overhead = len(dumps("")) intsize = len(dumps(1)) # bisect algorithm with bounds (in 1.5 this is in /Lib) # Insert item x in list a, and keep it sorted assuming a is sorted def insort(a, x, lo=0, hi=None): if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)/2 if x < a[mid]: hi = mid else: lo = mid+1 a.insert(lo, x) # Find the index where to insert item x in list a, assuming a is sorted def bisect(a, x, lo=0, hi=None): if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)/2 if x < a[mid]: hi = mid else: lo = mid+1 return lo NOROOMERROR = "NOROOMERROR" Rootflag = 1 Interiorflag = 2 Freeflag = 3 Leafflag = 4 LeafandRootflag = 5 Leafflags = (Leafflag, LeafandRootflag) Interiorflags = (Interiorflag, Rootflag) class Node_Fifo: """fifo of nodes for locality access optimization""" def __init__(self, size=30): self.fifo = [] # fifo of active nodes, if used. self.fifosize = size self.fifo_dict = {} def flush_fifo(self): for node in self.fifo: if node.dirty: node.store(1) self.fifo = [] self.fifo_dict = {} class Node: """B+ tree node. follows Silberchatz & Korth database intro book closely. Each node has a number self.validkeys> 1 of valid keys (except for a tree with only 0 or 1 entries. For leaves each self.key[i] that is valid is associated with int value self.indices[i] For nonleaves nextnode integer reference is at self.indices[i+1] and self.indices[0] is for entries with keys<self.keys[0] for leaves self.indices[self.size] is "pointer" to next sequential leaf. """ # for update optimization dirty = 0 fifo = None def __init__(self, flag, size, keylen, position, infile, cloner=None): self.flag = flag # one of Rootflag... self.size = size # num of pointers from this Node #if size>255: raise ValueError, "size too large: "+`size` if size<0: #or size%2==1: raise ValueError, "size must be positive <= 255" self.position = position # seek position in file self.infile = infile # open file for storage self.keylen = keylen # maximum key length (no nulls!) # seek pointers for descendents (root/interior) # all but last is a value for a leaf, last is successor seek self.indices = [-1] * (size+1) # key storage # for leaves value for key[i] is at indices[i] # for others keys[i] is at indices[i+1], # indices[0] points to keys preceding keys[0]. # for freelist nodes, nodes are stored on # linked list with indices[0] forward self.keys = [""] * size # linearized storage length in file #self.intstorage = intsize * (size+1) #self.keystorage = keylen * size # in debug mode the seek position is prepended #if debug: # self.intstorage = self.intstorage + intsize #self.storage = (2 + # flag, valid # self.intstorage + self.keystorage) if cloner is None: self.storage = (sequence_overhead + # list overhead 2*intsize + # flag, valid (size+1)*intsize + # indices size*(sequence_overhead + keylen) # keys ) else: self.storage = cloner.storage self.fifo = cloner.fifo # note, for interior nodes # validkey of 0 means one valid pointer, -1 means none # for leaves validkeys should be positive if flag in [Interiorflag, Rootflag]: self.validkeys = -1 # number of valid entries else: self.validkeys = 0 def clear(self): # reinitialize keys, indices for self. size = self.size self.keys = [""] * size self.validkeys = 0 if self.flag in Interiorflags: # reinit all indices self.indices = [-1] * (size+1) self.validkeys = -1 else: # don't clobber forward pointer self.indices[:size] = [-1] * size # interior node operation. def putnode(self, key, node): """place a node for key into self. Raise NOROOMERROR if no room.""" from types import StringType if type(key)!=StringType: raise TypeError, "bad key "+`key` position = node.position self.putposition(key, position) def putfirstindex(self, index): #print "putfirstindex", index if self.validkeys>=0: raise ValueError, "putfirstindex on full node" self.indices[0] = index self.validkeys = 0 def putposition(self, key, position): #print "putposition", (key, position), self.indices, self.keys if self.flag not in Interiorflags: raise ValueError, "cannot insert into leaf node" validkeys = self.validkeys last = validkeys + 1 if self.validkeys>=self.size: raise NOROOMERROR, "no room" # store the key if validkeys<0: # no nodes currently #print "no keys" self.validkeys = 0 self.indices[0] = position else: # yes nodes keys = self.keys # is the key there already? if key in keys: if keys.index(key)<validkeys: raise ValueError, "reinsert of node for existing key" place = bisect(keys, key, 0, validkeys) keys.insert(place, key) del keys[last] # store the index indices = self.indices #print "inserting", position, "before", indices indices.insert( place+1, position) del indices[last+1] #print "after", indices self.validkeys = last def delnode(self, key): """delete node for key, (key==None means "start" node) key must match exactly.""" if self.flag not in Interiorflags: raise ValueError, "cannot delete node from leaf node" if self.validkeys<0: raise KeyError, "no such key (empty)" validkeys = self.validkeys indices = self.indices keys = self.keys #print "delnode before", key, keys, indices, validkeys if key is None: # delete first node (shouldn't happen? place = 0 indexplace = 0 else: # delete non-first node place = keys.index(key) indexplace = place+1 del indices[indexplace] indices.append(nilseek) del keys[place] keys.append("") #keys[validkeys-1] = "" #print "delnode after", keys, indices self.validkeys = validkeys-1 def get_keys(self): """return a list of valid keys for self.""" validkeys = self.validkeys if validkeys<=0: return [] else: return self.keys[0:validkeys] def keys_indices(self, leftmost): """return [(leftmost, firstindex), (nodekey, nodeindex), ...]""" keys = self.get_keys() if self.flag in Interiorflags: # nonleaf, must add leftmost to complete keys keys = [leftmost] + keys indices = self.indices[:len(keys)] # return pairing return map(None, keys, indices) def getnode(self, key): """get node that exactly matches key (None for first)""" if self.flag not in Interiorflags: raise ValueError, "cannot getnode from leaf node" if key is None: index = 0 else: index = self.keys.index(key) + 1 place = self.indices[index] if place<0: raise IndexError, "invalid position! "+`(place, key)` # short-circuit optimization: check fifo fifo = self.fifo if fifo: ff = fifo.fifo fd = fifo.fifo_dict if fd.has_key(place): node = fd[place] ff.remove(node) ff.insert(0, node) return node node = self.clone(place) node = node.materialize() return node # leaf mode operations def next(self): """get next node from self in linear leaf sequence, or return None.""" if self.flag not in Leafflags: raise ValueError, "cannot get next for non-leaf." place = self.indices[self.size] if place == nilseek: return None else: node = self.clone(place) node = node.materialize() return node def putvalue(self, key, value): """put key->value mapping into leaf node. """ from types import StringType, IntType if type(key)!=StringType and type(value)!=IntType: raise ValueError, "bad key, value"+ `(key,value)` if self.flag not in Leafflags: raise ValueError, "cannot get next for non-leaf." validkeys = self.validkeys indices = self.indices keys = self.keys if validkeys<=0: # empty # "first entry", (key, value) indices[0] = value keys[0] = key self.validkeys = 1 else: place=None if key in keys: place = keys.index(key) if place>=validkeys: place=None if place is not None: keys[place] = key indices[place] = value else: if validkeys>=self.size: #print "node out of room" #for x in self.__dict__.items(): print x raise NOROOMERROR, "no room" place = bisect(keys, key, 0, validkeys) #print "next entry at", place #next = place+1 last = validkeys+1 del keys[validkeys] del indices[validkeys] keys.insert(place, key) indices.insert(place, value) self.validkeys = last def put_all_values(self, keys_indices): """optimization for node restructuring.""" self.clear() indices = self.indices keys = self.keys length = self.validkeys = len(keys_indices) if length>self.size: raise IndexError, "bad length "+`length` #if length<self.size/2-1: # not valid for delete (?) # raise IndexError, "not enough keys"+`length` for i in xrange(length): (keys[i], indices[i]) = keys_indices[i] def put_all_positions(self, first_position, keys_positions): """optimization for restructuring.""" self.clear() indices = self.indices keys = self.keys length = self.validkeys = len(keys_positions) if length>self.size: raise IndexError, "bad length "+`length` #if length<self.size/2: # not valid for delete (?) # raise IndexError, "not enough keys"+`length` indices[0] = first_position for i in xrange(length): (keys[i], indices[i+1]) = keys_positions[i] def delvalue(self,key): keys = self.keys indices = self.indices if key not in keys: raise KeyError, "missing key, can't delete" place = keys.index(key) validkeys = self.validkeys #next = place + 1 prev = validkeys -1 #keys[place:prev] = keys[next:validkeys] #indices[place:prev] = indices[next:validkeys] del keys[place] del indices[place] keys.insert(prev, "") indices.insert(prev, nilseek) self.validkeys = validkeys-1 #keys[prev] = "" #indices[prev] = nilseek def getvalue(self, key): """get value exactly matching key.""" try: place = self.keys.index(key) except ValueError: raise KeyError, "key not found: " + `key` else: return self.indices[place] def newneighbor(self, position): """make a new leaf adjacent to self""" if self.flag not in Leafflags: raise ValueError, "cannot make leaf neighbor for non-leaf." neighbor = self.clone(position) size = self.size indices = self.indices neighbor.indices[size] = indices[size] indices[size] = position return neighbor def nextneighbor(self): """return next leaf in tree, or None.""" if self.flag not in Leafflags: raise ValueError, "cannot get leaf neighbor for non-leaf." size = self.size position = self.indices[size] if position==nilseek: return None else: neighbor = self.clone(position) neighbor = neighbor.materialize() return neighbor def delnext(self, next, free): #print "delnext" #print self.indices, self.position #print next.indices, next.position size = self.size if self.indices[size]!=next.position: raise ValueError, "invalid next pointer" self.indices[size] = next.indices[size] return next.free(free) # free list mode operations def free(self, freenodeposition): """add self to free list, return position as new free position.""" self.flag = Freeflag self.indices[0] = freenodeposition self.store() return self.position def unfree(self, flag): """Assuming self is head of free list, pop self off freelist, return next free elt position DOES NOT STORE. """ next = self.indices[0] self.flag = flag self.validkeys = 0 self.indices[0] = nilseek self.clear() return next def clone(self, position): """return a Node of same shape as self.""" if self.fifo: dict = self.fifo.fifo_dict if dict.has_key(position): return dict[position] return Node(self.flag, self.size, self.keylen, position, self.infile, self) def getfreenode(self, freeposition, freenode_callback=None): """get free node of same shape as self from self.file make one if none exists. Assume freeposition is seek position of next free node. returns (node, newfreeposition) if freenode_callback is specified, it is a function to call with a new free list head, if needed freenode_callback(int) """ file = self.infile if freeposition==nilseek: # add at last position in file #save = file.tell() file.seek(0, 2) # goto eof position = file.tell() thenode = self.clone(position) thenode.store() # write new record #file.seek(save) return (thenode, nilseek) else: # get node at position position = freeposition thenode = self.clone(position) thenode = thenode.materialize() # get old node next = thenode.indices[0] if freenode_callback is not None: freenode_callback(next) thenode.__init__(self.flag, self.size, self.keylen, position, self.infile) thenode.store() # save reinitialized node return (thenode, next) def materialize(self): """read self from file.""" #print "materialize", self.position position = self.position if self.fifo: fifo = self.fifo # look in fifo dict = fifo.fifo_dict ff = fifo.fifo if dict.has_key(position): #print "using fifo", position node = dict[position] if node is not ff[0]: ff.remove(node) ff.insert(0, node) #if len(ff)!=len(dict): raise "whoops" return node f = self.infile #f.flush() # ? needed ? #save = f.tell() f.seek(position) data = f.read(self.storage) self.delinearize(data) #f.seek(save) # go back if self.fifo: self.add_to_fifo() return self def add_to_fifo(self): fifo = self.fifo ff = fifo.fifo dict = fifo.fifo_dict #if len(dict)!=len(ff): raise "whoops before" position = self.position if dict.has_key(position): old = dict[position] del dict[position] ff.remove(old) dict[self.position] = self #if self in ff: ff.remove(self) ff.insert(0, self) if len(ff)>self.fifo.fifosize: last = ff[-1] del ff[-1] del dict[last.position] #print "storing", last.position if last.dirty: last.store(1) #if len(dict)!=len(fifo): raise "whoops" def enable_fifo(self, size = 33): "you better disable it later!" if size<5 or size>1000000: raise ValueError, "size not valid: "+`size` self.fifo = Node_Fifo(size) def disable_fifo(self): #print "disabling fifo", self.fifo_dict.keys() #global fifo_on if self.fifo: self.fifo.flush_fifo() self.fifo = None def store(self, force=0): """write self to file at self.position return end of record seek position.""" #print "store", self.position position = self.position fifo = self.fifo if not force and fifo: fd = fifo.fifo_dict if fd.has_key(self.position) and fd[position] is self: self.dirty = 1 return # defer f = self.infile #save = f.tell() f.seek(position) data = self.linearize() f.write(data) last = f.tell() #f.seek(save) self.dirty = 0 if not force and self.fifo: self.add_to_fifo() return last def linearize(self): """create record format for self.""" from marshal import dumps all = [self.flag, self.validkeys] + self.indices + self.keys s = dumps(all) ls = len(s) storage = self.storage if (ls > storage): raise ValueError, "bad storage: " + `s` s = s + "X" * (storage-ls) return s #indices = self.indices # in debug prepend seek position #if debug: indices = [self.position] + indices #ints = encodeints(indices) #keys = encodestrs(self.keys, self.keylen) #validkeys = self.validkeys #if validkeys<0: v = "*" # dummy purposes only (prewrites) #else: v = chr(self.validkeys ^ CMASK) # try to make v readable #return "%s%s%s%s%s" % (self.flag, v, ints, keys, SEPARATOR) __print__ = linearize def delinearize(self, str): """parse, store from record format from self.""" from marshal import loads all = loads(str) [self.flag, self.validkeys] = all[:2] #self.flag = chr(ordflag) s = self.size next = 2+s+1 indices = self.indices = all[2:next] keys = self.keys = all[next:] if len(keys) != s: raise ValueError, "bad keys: " + `keys` + `len(keys)` def dump(self, indent=""): flag = self.flag if flag==Freeflag: print 'free->', self.position, nextp = self.indices[0] if nextp!=nilseek: next = self.clone(nextp) next = next.materialize() next.dump() else: print "!last" return nextindent = indent + " " print indent, if flag == Rootflag: print "root", elif flag == Interiorflag: print "interior", elif flag == Leafflag: print "leaf", elif flag == LeafandRootflag: print "root and leaf", else: print "invalid flag???", flag, print self.position, "valid=", self.validkeys print indent, "keys", self.keys print indent, "seeks", self.indices if flag in [Rootflag, Interiorflag]: # interior for i in self.indices: if i != nilseek: n = self.clone(i) n = n.materialize() n.dump(nextindent) else: # leaf pass print indent, "*****" class BplusTree: """Basic B+tree maps fixed length strings to integers (could be seek positions)""" length = None # fill in later dirty = 0 # default # length keylen, nodesize, root_seek, free header_format = "%10d %10d %10d %10d %10d\n" def __init__(self, infile, position=None, nodesize=None, keylen=None): """infile should be open file in "rb" or "w+b" mode. if optional args are not given they are determined from first line in file. """ #print "BPlusTree(%s, %s, %s)" % (position, nodesize, keylen) if keylen is not None and keylen<=2: raise ValueError, "keylen must be greater than 2" self.root_seek = nilseek # dummy self.free = nilseek self.root = None self.file = infile self.nodesize = nodesize self.keylen = keylen if position is None: position = 0 self.position = position #if nodesize is None: # self.get_parameters() def walker(self, keylower=None, includelower=None, keyupper=None, includeupper=None): return BplusWalker(self, keylower, includelower, keyupper, includeupper) def init_params(self): return (self.file, self.position, self.nodesize, self.keylen) def getfile(self): return self.file def getroot(self): return self.root def update_freelist(self, position): if self.free!= position: self.free = position self.reset_header() def startup(self): """startup the file, write header, set root""" if self.nodesize is None or self.keylen is None: raise ValueError, \ "cannot initialize without nodesize, keylen specified" self.length = 0 self.reset_header() file = self.file file.seek(0,2) # goto eof self.root_seek = file.tell() self.reset_header() root = self.root = Node(LeafandRootflag, self.nodesize, self.keylen, self.root_seek, file) root.store() def open(self): """get info on existing file.""" file = self.file self.get_parameters() self.root = Node(LeafandRootflag, self.nodesize, self.keylen, self.root_seek, file) self.root = self.root.materialize() fifo_enabled = 0 def enable_fifo(self,size=33): #print "fifo enabled" self.fifo_enabled = 1 self.root.enable_fifo(size) def disable_fifo(self): #print "fifo disabled" self.fifo_enabled = 0 if self.dirty: self.reset_header() self.dirty = 0 self.root.disable_fifo() def reset_header(self): """reset the header of the file""" if self.fifo_enabled: self.dirty = 1 return # defer file = self.file file.seek(self.position) #file.write( self.header_format % # (self.length, self.keylen, self.nodesize, self.root_seek, self.free) ) from marshal import dump dump( (self.length, self.keylen, self.nodesize, self.root_seek, self.free), file) def get_parameters(self): file = self.file #save = file.tell() file.seek(self.position) from marshal import load temp = load(file) #print temp, self.position (self.length, self.keylen, self.nodesize, self.root_seek, self.free)=\ temp #file.seek(save) def __len__(self): if self.length is None: self.get_parameters() return self.length def __getitem__(self, key): """self[key] -- get item associated with key""" if self.root is None: raise ValueError, "not open!" return self.find(key, self.root) def has_key(self, key): try: test = self[key] except KeyError: return 0 else: return 1 def __setitem__(self, key, value): """self[key]=value -- set map for key to value""" from types import StringType, IntType if type(key)!=StringType: raise ValueError, "key must be string" if type(value)!=IntType: raise ValueError, "value must be int" if len(key)>self.keylen: raise ValueError, "key too long" if value<0: raise ValueError, "value must be positive" current_length = self.length #if FORBIDDEN in key: # raise ValueError, "key cannot contain "+`FORBIDDEN` root = self.root if root is None: raise ValueError, "not open!" #global test1 #debug test1 = self.set(key, value, self.root) # do we need to split root? if test1 is not None: #print "splitting root", `test1` (leftmost, node) = test1 #print "leftmost", leftmost, node # make a non-leaf root (newroot, self.free) = root.getfreenode(self.free) newroot.flag = Rootflag if root.flag is LeafandRootflag: root.flag = Leafflag else: root.flag = Interiorflag newroot.clear() newroot.putfirstindex(root.position) newroot.putnode(leftmost, node) self.root = newroot self.root_seek = newroot.position newroot.store() root.store() self.reset_header() else: if self.length!=current_length: self.reset_header() def __delitem__(self, key): """del self[key] -- remove map for key to value""" root = self.root currentlength = self.length self.remove(key, root) if root.flag==Rootflag: validkeys = root.validkeys if validkeys<1: if validkeys<0: raise ValueError, "invalid empty non-leaf root" newroot = self.root = root.getnode(None) self.root_seek = newroot.position self.free = root.free(self.free) self.reset_header() if newroot.flag==Leafflag: newroot.flag = LeafandRootflag else: newroot.flag = Rootflag newroot.store() elif self.length!=currentlength: self.reset_header() elif root.flag!=LeafandRootflag: raise ValueError, "invalid flag for root" elif self.length!=currentlength: self.reset_header() def set(self, key, value, node): """insert key-->value starting at node. return None if no split, else return (leftmostkey, newnode) """ keys = node.keys validkeys = node.validkeys if node.flag in Interiorflags: # non leaf # find the descendent to insert in place = bisect(keys, key, 0, validkeys) #print place, key, validkeys, keys if place>=validkeys or keys[place]>=key: # insert at previous node index = place else: # index at node index = place+1 if index==0: nodekey=None else: nodekey=keys[place-1] #print "nodekey", nodekey, node.indices nextnode = node.getnode(nodekey) test = self.set(key, value, nextnode) # split? if test is not None: (leftmost, insertnode) = test try: # insert if room node.putnode(leftmost, insertnode) except NOROOMERROR: # no room, split insertindex = insertnode.position (newnode, self.free) = node.getfreenode( self.free, self.update_freelist) newnode.flag = Interiorflag ki = node.keys_indices("dummy") (dummy, firstindex) = ki[0] # remove dummy ki = ki[1:] # insert new pair insort(ki, (leftmost, insertindex)) newleftmost = self.divide_entries(firstindex, node, newnode, ki) node.store() newnode.store() return (newleftmost, newnode) else: node.store() return None # no split else: # leaf if key not in keys or keys.index(key)>=validkeys: newlength = self.length+1 else: newlength = self.length try: # insert if room node.putvalue(key, value) except NOROOMERROR: # no room: split # get entries (dummy is ignored for leaves) ki = node.keys_indices("dummy") insort(ki, (key, value)) (newnode, self.free) = node.getfreenode( self.free, self.update_freelist) newnode = node.newneighbor(newnode.position) newnode.flag = Leafflag # 0 is dummy firstindex, ignored for leaves newleftmost = self.divide_entries(0, node, newnode, ki) node.store() newnode.store() self.length = newlength return (newleftmost, newnode) else: node.store() self.length = newlength return None def remove(self, key, node): """remove key from tree at node. raise KeyError if absent. return (leftmost, size) if leftmost changes. otherwise return (None, size). Caller is responsible for restructuring node, if needed. """ newnodekey = None if node.flag in Interiorflags: # nonleaf keys = node.keys validkeys = node.validkeys place = bisect(keys, key, 0, validkeys) if place>=validkeys or keys[place]>=key: # delete at tree before place index = place else: # delete at tree for place index = place+1 if index==0: nodekey=None else: nodekey=keys[place-1] nextnode = node.getnode(nodekey) # recursively remove from nextnode (lm, size) = self.remove(key, nextnode) # is nextnode now too small? nodesize = self.nodesize half = nodesize/2 if (size<half): # restructure, ugly! # find another node for redistribution if nodekey is None and validkeys==0: raise IndexError, "invalid node, only one child!" if place>=validkeys: # final node, get previous rightnode = nextnode rightkey = nodekey if validkeys<=1: leftkey = None else: leftkey = keys[place-2] leftnode = node.getnode(leftkey) else: # non-final, get next leftnode = nextnode leftkey = nodekey if index==0: rightkey=keys[0] else: rightkey = keys[place] rightnode = node.getnode(rightkey) # get all keys, indices rightki = rightnode.keys_indices(rightkey) leftki = leftnode.keys_indices(leftkey) ki = leftki + rightki # redistribute or merge? #print "ki, nodesize", ki, nodesize lki = len(ki) if lki>nodesize or (leftnode.flag!=Leafflag and lki>=nodesize): # redistribute (newleftkey, firstindex) = ki[0] if leftkey==None: newleftkey = lm if leftnode.flag!=Leafflag: # nuke first ki ki = ki[1:] newrightkey = self.divide_entries( firstindex, leftnode, rightnode, ki) # delete, reinsert right node.delnode(rightkey) node.putnode(newrightkey, rightnode) # ditto for left if first changed if (leftkey!=None and leftkey!=newleftkey): node.delnode(leftkey) node.putnode(newleftkey, leftnode) node.store() leftnode.store() rightnode.store() else: # merge into left, free right (newleftkey, firstindex) = ki[0] #leftnode.clear() if leftnode.flag!=Leafflag: #leftnode.putfirstindex(firstindex) #del ki[0] #for (k,i) in ki: # leftnode.putposition(k,i) leftnode.put_all_positions(firstindex, ki[1:]) else: #for (k,i) in ki: # leftnode.putvalue(k,i) leftnode.put_all_values(ki) if rightnode.flag==Leafflag: self.free = leftnode.delnext(rightnode, self.free) else: self.free = rightnode.free(self.free) if leftkey is not None and newleftkey!=leftkey: node.delnode(leftkey) node.putnode(newleftkey, leftnode) node.delnode(rightkey) node.store() leftnode.store() self.reset_header() if leftkey is None: newnodekey = lm else: # no restructure # update leftmost, if needed if nodekey is None: newnodekey = lm elif lm is not None: node.delnode(nodekey) node.putnode(lm, nextnode) # end of restructure if else: # leaf, base case: just delete it if node.validkeys<1: # should only happen for empty root raise KeyError, "no such key" first = node.keys[0] node.delvalue(key) rest = node.keys[0] if first!=rest: newnodekey = rest node.store() self.length = self.length - 1 return (newnodekey, node.validkeys) def divide_entries(self, firstindex, node1, node2, entries): """divide presorted entries evenly among node1, node2 return leftmost of node2. firstindex is ignored for leaves """ middle = len(entries)/2 + 1 #node1.clear() #node2.clear() if node1.flag in Interiorflags: #middle = middle+1 left = entries[:middle] right = entries[middle:] #print "left, right", left, right # nonleaf #node1.putfirstindex(firstindex) #for (k,i) in left: # node1.putposition(k,i) (leftmost, midindex) = right[0] #node2.putfirstindex(midindex) #for (k,i) in right[1:]: # node2.putposition(k, i) node1.put_all_positions(firstindex, left) node2.put_all_positions(midindex, right[1:]) return leftmost else: # leaf left = entries[:middle] right = entries[middle:] #for (k,i) in left: # node1.putvalue(k,i) #for (k,i) in right: # node2.putvalue(k,i) node1.put_all_values(left) node2.put_all_values(right) return right[0][0] def find(self, key, node): """find key starting at node.""" while node.flag in Interiorflags: # non-leaf thesekeys = node.keys validkeys = node.validkeys # find place at or just beyond key place = bisect(thesekeys, key, 0, validkeys) if place>=validkeys or thesekeys[place]>key: if place==0: nodekey=None else: nodekey=thesekeys[place-1] else: nodekey = key node = node.getnode(nodekey) return node.getvalue(key) def dump(self): self.root.dump() if self.free!=nilseek: free = self.root.clone(self.free) free = free.materialize() free.dump() def __del__(self): if self.fifo_enabled: self.disable_fifo() class BplusWalker: """iterative walker for bplustree leaf nodes.""" def __init__(self, tree, keylower=None, includelower=None, keyupper=None, includeupper=None): """initialize a walker for tree with key values bounded by upper/lower, if given, included or excluded as specified. Tree should never be updated while walker is active, otherwise behaviour of walker is undefined.""" self.tree = tree self.keylower = keylower self.includelower = includelower self.keyupper = keyupper self.includeupper = includeupper if self.tree.getroot() == None: self.tree.open() # get the first pertinent leaf in tree node = self.tree.getroot() while node.flag in Interiorflags: # interior node, seek a leaf if keylower is None: nkey = None else: keys = node.get_keys() place = bisect(keys, keylower) if place==0: nkey = None elif place>len(keys): nkey = keys[-1] else: nkey = keys[place-1] node = node.getnode(nkey) self.node = self.startnode = node # preinit self.node_index = None self.valid = 0 # pessimism self.first() def first(self): """reset walker to first position, or raise IndexError if keyrange is empty.""" node = self.node = self.startnode # is the key in the node? keys = node.keys #print "first at", keys keylower = self.keylower keyupper = self.keyupper validkeys = node.validkeys self.valid = 0 if keylower==None: self.node_index = 0 self.valid = 1 elif keylower in keys and self.includelower: index = self.node_index = keys.index(keylower) if index<validkeys: self.valid = 1 # hurrah! if not self.valid: # look for next place = bisect(keys, keylower, 0, validkeys) if place<validkeys: index = self.node_index = place testk = keys[index] if (testk>keylower or (self.includelower and testk==keylower)): self.valid = 1 else: self.valid = 0 else: # advance to the next node next = node.nextneighbor() if next is not None: self.startnode = next self.first() return else: self.valid = 0 # test keyupper if self.valid and keyupper is not None: key = self.current_key() if key<keyupper or (self.includeupper and key==keyupper): self.valid = 1 else: self.valid = 0 def current_key(self): """key the walker currently "points at".""" if self.valid: return self.node.keys[self.node_index] else: raise IndexError, "not at valid index" def current_value(self): """value the walker currently "points at".""" #print "current at", self.node_index, self.node.indices if self.valid: return self.node.indices[self.node_index] else: raise IndexError, "not at valid index" def next(self): """advance to next position, or set to invalid.""" nextp = self.node_index+1 node = self.node if nextp>=node.validkeys: # goto next node next = node.nextneighbor() if next is None: self.valid = 0 return node = self.node = next nextp = 0 #print "next at", node.keys, node.indices, nextp, node.validkeys if node.validkeys<=nextp: self.valid = 0 else: testkey = node.keys[nextp] keyupper = self.keyupper if (keyupper is None or testkey<keyupper or (self.includeupper and testkey==keyupper)): self.node_index = nextp self.valid = 1 else: self.valid = 0 class caching_BPT(BplusTree): """simple caching. No updates allowed.""" def __init__(self, infile, position=None, nodesize=None, keylen=None): BplusTree.__init__(self, infile, position, nodesize, keylen) self.cache = {} def __getitem__(self, key): try: return self.cache[key] except KeyError: r = self.cache[key] = BplusTree.__getitem__(self, key) return r def reset_cache(self): self.cache = {} def nope(self, *args): raise ValueError, "op not permitted for caching_BPT" __setitem__ = __delitem__ = nope class SBplusTree: """Wrapper for BPlusTree, maps strings-->strings. Key strings are fixed length as in BPlusTree. Value strings are arbitrary length but space for overwritten or deleted values will be wasted in the file (the aren't GC'd, unlike tree nodes which are. """ # can be overridden. treeclass = BplusTree def __init__(self, infile, position=None, nodesize=None, keylen=None): self.infile = infile self.tree = self.treeclass(infile, position, nodesize, keylen) def walker(self, keylower=None, includelower=None, keyupper=None, includeupper=None): return SBplusWalker(self, keylower, includelower, keyupper, includeupper) def __len__(self): return len(self.tree) def init_params(self): return self.tree.init_params() def getroot(self): return self.tree.getroot() def getfile(self): return self.infile def enable_fifo(self, size=33): self.tree.enable_fifo(size) def disable_fifo(self): self.tree.disable_fifo() def dump(self): """ignore real values here, should fix.""" self.tree.dump() def startup(self): self.tree.startup() def open(self): self.tree.open() def __getitem__(self, key): seek = self.tree[key] return getstring(self.infile, seek) def __setitem__(self, key, value): """Warning: overwrite "loses" old value space.""" #try: # test = self[key] #except KeyError: # go = 1 #else: # go = (test != key) #if go: # assume overwrite (optimize) seek = putstring(self.infile, value) self.tree[key] = seek def __delitem__(self, key): """Warning: loses old value storage.""" del self.tree[key] def has_key(self): return self.tree.has_key(self) class caching_SBPT(SBplusTree): """string-->string caching b-plus tree.""" treeclass = caching_BPT class SBplusWalker: """iterator for string-->string Bplus tree.""" # can be overridden walkerclass = BplusWalker def __init__(self, tree, keylower=None, includelower=None, keyupper=None, includeupper=None): self.walker = self.walkerclass(tree, keylower, includelower, keyupper, includeupper) self.file = tree.getfile() self.valid = self.walker.valid def first(self): self.walker.first() self.valid = self.walker.valid def current_key(self): return self.walker.current_key() def current_value(self): seek = self.walker.current_value() return getstring(self.file, seek) def next(self): self.walker.next() self.valid = self.walker.valid def putstring(infile, s): """Add a new string record to eof. return start seek.""" #save = infile.tell() # seek to eof infile.seek(0,2) last = infile.tell() from marshal import dump dump(s, infile) #infile.seek(save) return last def getstring(infile, i): """get an old string record at i""" #save = infile.tell() infile.seek(i) from marshal import load s = load(infile) #infile.seek(save) return s def recopy_bplus(fromfile, tofile, treeclass=BplusTree): """copy BplusTree from fromfile to tofile. from file should be open "rb", tofile "w+b".""" fromtree = treeclass(fromfile) fromtree.open() (f, p, n, k) = fromtree.init_params() totree = treeclass(tofile, p, n, k) totree.startup() return recopy_tree(fromtree, totree) def recopy_tree(fromtree, totree): """copy fromtree contents to totree. trees must be compatible. copy attempts to "compactize" totree.""" (f,p,n,k) = totree.init_params() try: totree.enable_fifo() walker = fromtree.walker() # fill up first node in totree part1 = n/2 +1 part2 = part1-2 defer = [] while walker.valid: # pseudooptimization: defer n/2-1 tail elements # for n even this makes all leaves full (in tests) for i in xrange(part1): if not walker.valid: break totree[ walker.current_key() ] = walker.current_value() walker.next() for (k,v) in defer: totree[k]=v defer = [] for i in xrange(part2): if not walker.valid: break defer.append( (walker.current_key(), walker.current_value()) ) walker.next() for (k,v) in defer: totree[k] = v return (fromtree, totree) finally: #print "disabling fifo" totree.disable_fifo() def recopy_sbplus(fromfile, tofile, treeclass=SBplusTree): """copy SBplusTree from fromfile to tofile. from file should be open "rb", tofile "w+b". this will create a new file without "lost garbage".""" return recopy_bplus(fromfile, tofile, treeclass) ##### simple dbm compatibility bignum = 0x7efe77 # 8 million buckets def myhash(s): """portable string hash function. (because builtin hash isn't portable).""" o = ord B = bignum result = 775 + len(s)*1001 for c in s: #print result result = (result*253 + o(c)*113) % B return result class dbm: """dbm compatible index file with unlimited key/value size. overwrites, dels and hash collisions leave "junk" in index. Alternate implementations left to reader, or to future. Hash indexed into buckets in an SBplusTree. buckets with marshalled dict of {key: value} for elements in this bucket. """ flagmap = {"r": "rb", "w": "r+b", "c": "w+b"} openmodes = ("r", "w") treeclass = SBplusTree nodesize = 202 def __init__(self, filename, flag="r", mode=None): #print "init", filename, flag, mode if mode is not None: raise ValueError, "sorry mode not supported (portability)" self.fileflag = flag rf = self.realflag = self.flagmap[flag] self.filename = filename f = self.file = open(filename, rf) # length record at start of file if flag in self.openmodes: from marshal import load from string import atoi self.length = load(f) # parameters determined from header #print "reopening", self.length, f.tell() t = self.tree = self.treeclass(f, f.tell()) t.open() else: # put length record from marshal import dump dump(0, f) self.length = 0 #print "creating", self.length, f.tell() t = self.tree = self.treeclass(f, f.tell(), self.nodesize, intsize-1) t.startup() self.tree.enable_fifo(self.nodesize+3) closed = 0 def close(self): if self.closed: return self.tree.disable_fifo() # put length record if self.length<0: raise ValueError, "negative len?"+`(self.length, self.filename)` f = self.file if self.fileflag in ("c", "w"): f.seek(0) from marshal import dump dump(self.length, f) f.close() self.closed = 1 def __del__(self): self.close() def __len__(self): return self.length def hash(self, key): from marshal import dumps h = myhash(key) hs = dumps(h)[1:] # nuke indicator return hs def pairs(self, hash): try: spairs = self.tree[hash] except KeyError: return {} from marshal import loads return loads(spairs) def setpairs(self, hash, pairs): from marshal import dumps spairs = dumps(pairs) self.tree[hash] = spairs def __getitem__(self, item): h = self.hash(item) pairs = self.pairs(h) return pairs[item] def __setitem__(self, item, value): h = self.hash(item) pairs = self.pairs(h) if not pairs.has_key(item): self.length = self.length+1 pairs[item] = value self.setpairs(h, pairs) #print self.length def __delitem__(self, item): h = self.hash(item) pairs = self.pairs(h) del pairs[item] if pairs: self.setpairs(h, pairs) else: del self.tree[h] self.length = self.length-1 #print self.length def has_key(self, item): try: test = self[item] except KeyError: return 0 else: return 1 def keys(self): """not terribly efficient! (should optimize?)""" result = [] w = self.tree.walker() from marshal import loads while w.valid: spairs = w.current_value() pairs = loads(spairs) for k in pairs.keys(): result.append(k) w.next() if len(result)!=self.length: raise IndexError, "bad tree length:"+`(len(result), self.length)` return result def copy(self, tofilename, flag, mode=None): if flag=="r": raise ValueError, "nonsense! can't copy into read only index" #print "copy", tofilename, flag other = dbm(tofilename, flag, mode) if flag=="c": # create: make optimal recopy_tree(self.tree, other.tree) other.length = self.length other.tree.enable_fifo(other.nodesize+3) elif flag=="w": # insert-into: simple traversal (collisions waste space) w = self.tree.walker() from marshal import loads while w.valid: spairs = w.current_value() pairs = loads(spairs) for (k,v) in pairs.items(): other[k] = v w.next() return other def testdbm(): print "creating files test1, 2, 3 for dbm test" d1 = dbm("test1", "c") for x in range(10): key = "hello"*x d1[key] = "01234567890"[:-x] print key, d1[key] print d1.keys() for x in range(300): d1[oct(x)] = hex(x) del d1[''] print len(d1), d1.keys() print "should be 0:", d1.has_key(""), d1.has_key("abd") print "copying" d2 = d1.copy("test2", "c") beforedel = len(d1) del d2["hello"] print len(d2), d2.keys() d2.close() d2 = dbm("test2", "r") print "should be equal", beforedel-1, len(d2) print "keys", d2.keys() print "testing copy-into" d3 = dbm("test3", "c") d3["willy"] = "wally" d3.close() d3 = d2.copy("test3", "w") print "should be equal", beforedel, len(d3) print "keys", d3.keys() ### test def test(): """test program: creates a bplustree file "test". try messing with the node size. """ print "creating file 'test' in current directory for test data." f = open("test", "w+b") B = SBplusTree(f, 0, 202, 10) B.startup() B.enable_fifo() #return B B["this"] = 0xdad from string import letters, digits for x in letters+digits: B[x] = ord(x) for x in "13579finalmopq": del B[x] print "final pass" from time import time s = time() for x in range(1000): B[hex(x)] = x; #print x print "one thousand assigns", time()-s #B.dump() B.disable_fifo() return (B, f) def retest(): from time import time f = open("test", "rb") B = caching_SBPT(f) B.open() B.enable_fifo() print "retesting" for x in "abcdefghi012345": try: print x, "-->", B[x] except KeyError: print x, "absent" print "entering torture chamber" s = time() for x in range(1000): l = B[hex(x)] print "1 thousand retrieves: ", time()-s return B print "keys, values between 4 and C (including C)" W = SBplusWalker(B, "4", 0, "C", 1) while W.valid: print (W.current_key(), W.current_value()), W.next() print print "keys, values between 4 (including 4) and C (excluding C)" W = SBplusWalker(B, "4", 1, "C", 0) while W.valid: print (W.current_key(), W.current_value()), W.next() print print "all keys" W = SBplusWalker(B) while W.valid: print W.current_key(), W.next() print print "A to A inclusive (1 elt)" W = SBplusWalker(B, "A", 1, "A", 1) while W.valid: print W.current_key(), W.next() print print "A to A exclusive (0 elt)" W = SBplusWalker(B, "A", 1, "A", 0) while W.valid: print W.current_key(), W.next() print print "AA to AA inclusive (0 elt)" W = SBplusWalker(B, "AA", 1, "AA", 0) while W.valid: print W.current_key(), W.next() print print B.disable_fifo() return (W, B, f) if __name__=="__main__": (B,f) = test() B=None f.close() retest()