Difference between revisions of "Graphing with R"
Jump to navigation
Jump to search
PeterHarding (talk | contribs) (Created page with "=Processing Data on WIndows 7= I use the following BAT file to batch up R in a folder containing multiple data sets. <pre> @echo off set R_TERM="C:\Apps\R\R-3.0.1\bin\i386...") |
PeterHarding (talk | contribs) |
||
| Line 16: | Line 16: | ||
) | ) | ||
</pre> | </pre> | ||
[[File:Plot.bat_script]] | |||
==R Script File== | ==R Script File== | ||
| Line 71: | Line 73: | ||
dev.off() | dev.off() | ||
</pre> | </pre> | ||
[[File:Plot.r]] | |||
[[Image:lnfsnd51_20130814.png]] | |||
[[File:lnfsnd51_20130814.csv]] | |||
[[Category:R]] | [[Category:R]] | ||
Revision as of 17:10, 17 September 2013
Processing Data on WIndows 7
I use the following BAT file to batch up R in a folder containing multiple data sets.
@echo off
set R_TERM="C:\Apps\R\R-3.0.1\bin\i386\Rterm.exe"
set FILES=*.csv
for %%F in (%FILES%) DO (
ECHO Processing %%F
%R_TERM% --no-restore --no-save --args %%F < plot.r > plot.out 2>&1
)
R Script File
args <- commandArgs(trailingOnly = TRUE)
print(args)
name <- args[1]
regexp <- "([^_]*)_([[:digit:]]{4})([[:digit:]]{2})([[:digit:]]{2}).*"
host <- sub(pattern=regexp, replacement="\\1", x=name)
year <- sub(pattern=regexp, replacement="\\2", x=name)
month <- sub(pattern=regexp, replacement="\\3", x=name)
day <- sub(pattern=regexp, replacement="\\4", x=name)
date <- sprintf("%s-%s-%s", year, month, day)
rm(args)
data_file <- sprintf("%s_%s%s%s.csv", host, year, month, day)
print(data_file)
data <- read.csv(data_file, header=T)
# data$Timestamp <- strptime(paste(data$Date, data$Time), "%Y-%m-%d %H:%M:%S")
data$Timestamp <- strptime(data$DateTime, "%Y-%m-%d %H:%M:%S")
title <- sprintf("%s - %s - %% CPU Utilization", date, host)
data$CPU <- data$User + data$System
print(title)
png(sprintf("%s_%s%s%s.png", host, year, month, day))
plot(data$Timestamp, data$CPU, main=title, type="h", col="light blue", xlab="Time", ylab="Ucpu%", lwd=1)
points(data$Timestamp, data$CPU, col="blue")
abline(h=mean(data$CPU), lty=2, col="red")
#s <- spline(data$CPU)
lines(smooth.spline(data$Timestamp, data$CPU, df = 10), lty = 3, col = "Dark Green")
#
#lines(s$x, s$y, type="b", pch=22, col="blue", lty=2)
dev.off()