
ZSI: The Zolera Soap Infrastructure
User’s Guide

Release 2.0.0

Joshua Boverhof,
Charles Moad

February 01, 2007

jrboverhof@lbl.gov

COPYRIGHT

Copyright c© 2001, Zolera Systems, Inc.
All Rights Reserved.

Copyright c© 2002-2003, Rich Salz.
All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the ”Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all
copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY
SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

Copyright c© (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided that the following conditions are
met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer. (2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution. (3) Neither the
name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of
its contributors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (”Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such Enhancements or derivative works thereof, in binary and source code form.

ii

CONTENTS

1 Introduction 1
1.1 Acronyms and Terminology . 1
1.2 Overview . 2
1.3 Not Covered . 2
1.4 References . 3

2 WSDL to Python Code 5
2.1 wsdl2py . 5
2.2 Code Generation from WSDL and XML Schema . 8

3 Using ServiceContainer with wsdl2dispatch 11
3.1 running the script . 11
3.2 class ServiceInterface . 11
3.3 service skeleton . 11
3.4 service implementation . 12

A wsdl2py script 13
A.1 Command Line Flags . 13

B wsdl2dispatch script 15
B.1 Command Line Flags . 15

iii

iv

CHAPTER

ONE

Introduction

ZSI, the Zolera SOAP Infrastructure, is a Python package that provides an implementation of the SOAP specification,
as described in SOAP 1.1 Specification.

This guide demonstrates how to use ZSI to develop Web Service applications from a Web Services Description Lan-
guage document.

This document is primarily concerned with demonstrating and documenting how to use a Web Service by creating and
accessing Python data for the purposes of sending and receiving SOAP messages. Typecodes are used to marshall
Python datatypes into XML, which can be included in a SOAP Envelope. The typecodes are generated from informa-
tion provided in the WSDL document, and generally describe SOAP and XML Schema data types. For a low-level
treatment of typecodes, and a description of SOAP-based processing see the ZSI manual.

1.1 Acronyms and Terminology

SOAP
Usually refering to the content and format of a message ultimately sent and received by a Web Service, see SOAP
1.1 Specification

WSDL
A document describing a Web Service’s interface, see Web Services Description Language

XMLSchema
Standard for modeling XML document structure. See XML Schema Specification

schema document
a file containing a schema definition.

schema (instance)
The set of rules or components contained in the assemblage of one or more schema documents.

Element Declaration
A schema component that associates a name with a type definition. eg. ¡element name=”age” type=”xsd:int”¿,

GED
Global Element Declaration, an element declared at the top-level of a schema.

ComplexType
The parent of all type definitions that can specify attributes and children.

SimpleType
A simple data type like a string or integer. The XML Schema Specification defines many built-in types.

1

The XML Schema type library
The http://www.w3.org/2001/XMLSchema namespace, which contains definitions of various primitive
types like string and integer, as well as a compound type complexType used to create aggregate types. Conven-
tionally the xsd prefix is used to map to this schema.

doc/literal
document style with literal encoding

rpc/enc
rpc style with specified encoding, not compatible with Basic Profile (WS-Interop)

rpc/literal
rpc style with literal encoding.

1.2 Overview

The ZSI Web Service tools are for top-Down Web Service development, using an existing WSDL Document to create
client and server applications (see 1.3). A Web Service, in the context of this document, exposes a WSDL Document
describing the service’s interface, this document is typically available at a published URL (see Uniform Resource
Locator). The WSDL document defines SOAP bindings for communicating with the service. These bindings will be
used to exchange SOAP messages, the contents of these messages must adhere to the document structure specified by
the schema. The schema is either included in the WSDL Document, imported by it, or represented by the available
built-in types (such as xsd:int, xsd:string, etc).

1.2.1 soap bindings

The two styles of SOAP bindings are rpc and document. The use of literal encoding is encouraged and the recom-
mended way to develop new Web Service applications (see Basic Profile (WS-Interop)). The SOAP encoded support is
maintained for use with old apps, and other SOAP toolkits restricted to rpc/enc development. A doc/literal service is
typically described as an exchange of documents, while a rpc/enc or rpc/literal service is thought of in terms of remote
procedure calls. Whether this distinction of purpose is meaningful or useful is debatable. ZSI supports all three types,
but rpc/literal and doc/literal are the focus of ongoing development.

1.2.2 python tools

wsdl2py

The wsdl2py script generates python code representing the various components defined in a WSDL Document. The
second chapter introduces wsdl2py and demonstrates how to create a client for a simple Web Service from a WSDL
document.

wsdl2dispatch

The wsdl2dispatch script should be run after running wsdl2py , since the module it generates will attempt to import
all wsdl2py generates. This sciprt generates a module containing a service interface generated from the WSDL
Document. This interface is typically subclassed and invoked through an HTTP server.

1.3 Not Covered

1. How to create a WSDL document

2 Chapter 1. Introduction

2. How to write XML Schema

3. Interoperability

4. How to use Web Services without WSDL

1.4 References

1. Web services development patterns http://www-128.ibm.com/developerworks/websphere/
library/techarticles/0511 flurry/0511 flurry.html

1.4. References 3

4

CHAPTER

TWO

WSDL to Python Code

The wsdl2py script is the primary tool. It will generate all the code needed to access a Web Service through an
exposed WSDL document, usually this description is available at a URL which is provided to the script.

wsdl2py generates a ”stub” module from the WSDL SOAP Bindings. It contains various classes, including a
Locator which represents the bindings to the actual Web Service, and several port classes that are used to re-
motely invoke operations on the Web Service, as well as various Message classes that represent the SOAP and XML
Schema data types. A Message instance is serialized as a XML instance. A Message passed as an argument to a
port method is then serialized into a SOAP Envelope and transported to the Web Service, the client will then wait for
an expected response, and finally the SOAP response is marshalled back into the Message returned to the user.

A second module the ”types”, contains typecodes representing all the components of each schema specified by the
target WSDL Document (not including built-in types). Each schema component declared at the top-level, the imme-
diate children of the schema tag, are global in scope and by importing the ”types” module an application has access to
the GEDs and global type definitions either directly by reference or through the convenience functions GED and GTD,
respectively.

2.1 wsdl2py

2.1.1 Basics of Code Generation

client stub module

Using only the General Flags options one can generate a client stub module from a WSDL description, consisting of
representations of the WSDL information items service, binding, portType, and message.

class Locator(**keywords)
The following keyword arguments may be used:

These four items are represented by three abstractions, consisting of a Locator class, PortType class, and several
Message classes. The Locator will have two methods for each service port declared in the WSDL definition. One
method returns the address specified in the binding, and the other is a factory method for returning a PortType instance.
Each Message class represents the aspects of the binding at the operation level and below, and any type information
specified by message part items.

types module

The types module is generated with the client module but it can be created independently. This is especially useful
for dealing with schema definitions that aren’t specified inside of a WSDL document.

The module level class defintions each represent a unique namespace, they are simply wrappers for the contents of

5

individual namespaces. The inner classes are the typecode representations of global type definitions (suffix Def), and
element declarations (suffix Dec).

understanding the generated typecodes

The generated inner typecode classes come in two flavors, as mentioned above. element declarations can be serialized
into XML, generally type definitions cannot. In very simple terms, the name attribute of an element declaration is
serialized into an XML tag, but type definitions lack this information so they cannot be directly serialized into an XML
instance. Most element declarations declare a type attribute, this must reference a type definition. Considering the
above scenario, a generated TypeCode class representing an element declaration will subclass the generated TypeCode
class representing the type definition.

pyclass All instances of generated TypeCode classes will have a pyclass attribute, instances of the pyclass can be
created to store the data representing an element declaration. The pyclass itself has a typecode attribute, which is a
reference to the TypeCode instance describing the data, thus making pyclass instances self-describing. When parsing
an XML instance the data will be marshalled into a pyclass instance.

aname The aname is a TypeCode instance attribute, its value is a string representing the attribute name used to
reference data representing an element declaration. The set of XMLSchema element names is NCName, this is a
superset of ordinary identifiers in python.

Namespaces in XML

From Namespaces in XML
NCName ::= (Letter | ’_’) (NCNameChar)*
NCNameChar ::= Letter | Digit | ’.’ | ’-’ | ’_’ | CombiningChar | Extender

From Python Reference Manual (2.3 Identifiers and keywords)
identifier ::= (letter|"_") (letter | digit | "_")*

Default set of anames
ANAME ::= ("_") (letter | digit | "_")*

transform NCName into an ANAME

1. preprend ” ”

2. character not in set (letter | digit | ” ”) change to ” ”

Attribute Declarations: attrs aname The attrs aname is a TypeCode instance attribute, its value is a string repre-
senting the attribute name used to reference a dictionary, containing data representing attribute declarations. The keys
of this dictionary are the (namespace,name) tuples, the value of each key represents the value of the attribute.

Mixed Text Content: mixed aname

2.1.2 Typecode Extensions

–complexType

6 Chapter 2. WSDL to Python Code

The complexType flag provides many conveniences to the programmer. This option is tested and reliable, and highly
recommended by the authors.

low-level description When enabled the __metaclass__ attribute will be set on all generated pyclasses. The
metaclass will introspect the typecode attribute of pyclass, and create a set of helper methods for each element and
attribute declared in the complexType definition. This option simply adds wrappers for dealing with content, it doesn’t
modify the generation scheme.

Getters/Setters A getter and setter function is defined for each element of a complex type. The functions are named
get_element_ANAME and set_element_ANAME respectively. In this example, variable wsreq has func-
tions named get_element_Options and set_element_Options. In addition to elements, getters and
setters are generated for the attributes of a complex type. For attributes, just the name of the attribute is used in
determining the method names, so get attribute NAME and set attribute NAME are created.

Factory Methods If an element of a complex type is a complex type itself, then a conveniece factory method is
created to get an instance of that types holder class. The factory method is named, newANAME, so wsreq has a
factory method, new_Options.

Properties Python class properties are created for each element of the complex type. They are mapped to the
corresponding getter and setter for that element. To avoid name collisions the properties are named, PNAME,
where the first letter of the type’s pname attribute is capitalized. In our running example, wsreq has class
property, Options, which calls functions get_element_Options and set_element_Options under
the hood.

<xsd:complexType name=’WolframSearchOptions’>
<xsd:sequence>
<xsd:element name=’Query’ minOccurs=’0’ maxOccurs=’1’ type=’xsd:string’/>
<xsd:element name=’Limit’ minOccurs=’0’ maxOccurs=’1’ type=’xsd:int’/>

</xsd:sequence>
<xsd:attribute name=’timeout’ type=’xsd:double’ />

</xsd:complexType>
<xsd:element name=’WolframSearch’>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=’Options’ minOccurs=’0’ maxOccurs=’1’ type=’ns1:WolframSearchOptions’/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Create a request object to operation WolframSearch
to be used as an example below
from WolframSearchService_services import *

port = WolframSearchServiceLocator().getWolframSearchmyPortType()
wsreq = WolframSearchRequest()

2.1. wsdl2py 7

sample usage of the generated code

get an instance of a Options holder class using factory method
opts = wsreq.new_Options()
wsreq.Options = opts

assign values using the properties or methods
opts.Query = ’Newton’
opts.set_element_Limit(10)

don’t forget the attribute
opts.set_attribute_timeout(1.0)

At this point the serialized wsreq object would resemble this:
<WolframSearch>
<Options timeout="1.0" xsi:type="tns:WolframSearchOptions">
<Query xsi:type="xsd:string">Newton</Query>
<Limit xsi:type="xsd:double">10.0</Limit>
</Options>
</WolframSearch>

ready call the remote operation
wsresp = port.WolframSearch(wsreq)

returned WolframSearchResponse type holder also has conveniences
print ’SearchTime:’, wsresp.Result.SearchTime

2.2 Code Generation from WSDL and XML Schema

This section covers wsdl2py, the second way ZSI provides to access WSDL services. Given the path to a WSDL
service, two files are generated, a ’service’ file and a ’types’ file, that one can then use to access the service.
As an example, we will use the search service provided by Wolfram Research Inc. c©, http://webservices.
wolfram.com/wolframsearch/, which provides a service for searching the popular MathWorld site, http:
//mathworld.wolfram.com/, among others.

wsdl2py -bu http://webservices.wolfram.com/services/SearchServices/WolframSearch2.wsdl

Run the above command to generate the service and type files. wsdl2py uses the name attribute of the wsdl:service
element to name the resulting files. In this example, the service name is WolframSearchService. Therefore the files
WolframSearchService services.py and WolframSearchService services types.py should be generated.

The ’service’ file contains locator, portType, and message classes. A locator instance is used to get an instance of a
portType class, which is a remote proxy object. Message instances are sent and received through the methods of the
portType instance.

The ’types’ file contains class representations of the definitions and declarations defined by all schema instances
imported by the WSDL definition. XML Schema attributes, wildcards, and derived types are not fully handled.

2.2.1 Example Use of Generated Code

The following shows how to call a proxy method for WolframSearch. It assumes wsdl2py has already been run as
shown in the section above. The example will be explained in greater detail below.

8 Chapter 2. WSDL to Python Code

import the generated class stubs
from WolframSearchService_services import *

get a port proxy instance
loc = WolframSearchServiceLocator()
port = loc.getWolframSearchmyPortType()

create a new request
req = WolframSearchRequest()
req.Options = req.new_Options()
req.Options.Query = ’newton’

call the remote method
resp = port.WolframSearch(req)

print results
print ’Search Time:’, resp.Result.SearchTime
print ’Total Matches:’, resp.Result.TotalMatches
for hit in resp.Result.Matches.Item:

print ’--’, hit.Title

Now each section of the code above will be explained.

from WolframSearchService_services import *

We are primarily interested in the service locator that is imported. The binding proxy and classes for all the messages
are additionally imported. Look at the WolframSearchService services.py file for more information.

loc = WolframSearchServiceLocator()
port = loc.getWolframSearchmyPortType()

Using an instance of the locator, we fetch an instance of the port proxy which is used for invoking the remote methods
provided by the service. In this case the default location specified in the wsdlsoap:address element is used. You
can optionally pass a url to the port getter method to specify an alternate location to be used. The portType - name
attribute is used to determine the method name to fetch a port proxy instance. In this example, the port name is
WolframSearchmyPortType, hence the method of the locator for fetching the proxy is getWolframSearchmyPortType.

The first step in calling WolframSearch is to create a request object corresponding to the input message of the method.
In this case, the name of the message is WolframSearchRequest. A class representing this message was imported from
the service module.

req = WolframSearchRequest()
req.Options = req.new_Options()
req.Options.Query = ’newton’

Once a request object is created we need to populate the instance with the information we want to use in our request.
This is where the --complexType option we passed to wsdl2py will come in handy. This caused the creation of
functions for getting and setting elements and attributes of the type, class properties for each element, and conve-
nience functions for creating new instances of elements of complex types. This functionality is explained in detail in
subsection A.1.2.

Once the request instance is populated, calling the remote service is easy. Using the port proxy we call the method we
are interested in. An instance of the python class representing the return type is returned by this call. The resp object
can be used to introspect the result of the remote call.

2.2. Code Generation from WSDL and XML Schema 9

resp = port.WolframSearch(req)

Here we see that the response message, resp, represents type WolframSearchReturn. This object has one element,
Result which contains the search results for our search of the keyword, newton.

print ’Search Time:’, resp.Result.SearchTime
...

Refer to the wsdl for WolframSearchService for more details on the returned information.

10 Chapter 2. WSDL to Python Code

CHAPTER

THREE

Using ServiceContainer with
wsdl2dispatch

The wsdl2dispatch script generates a service skeleton, typicallly this interface will be subclassed and the base class
methods will be invoked by the implementation code. Functionally the methods of the base class will parse the SOAP
request into the expected message, which is available by referencing the instance’s request attribute, and return an
initialized response message.

3.1 running the script

Running the command below generates the file WolframSearchService services server.py

wsdl2dispatch -u http://webservices.wolfram.com/services/SearchServices/WolframSearch2.wsdl

3.2 class ServiceInterface

In the ServiceContainer infrastructure all generated service skeletons subclass ServiceInterface. A ser-
vice instance’s post attribute specifies the path used to contact the service.

class ServiceInterface:
’’’Defines the interface for use with ServiceContainer Handlers.
’’’

def __init__(self, post):
self.post = post

3.3 service skeleton

The skeleton is generated by the wsdl2dispatch script. The WolframSearch operation is shown below, the request
SOAP message is parsed into a python instance and the response is initialized and returned.

11

WolframSearchService_services_server.py
class WolframSearchService(ServiceSOAPBinding):

...
def soap_WolframSearch(self, ps):

self.request = ps.Parse(WolframSearchRequest.typecode)
return WolframSearchResponse()

...

3.4 service implementation

The user must implement the service and dump it into a container that understands how to correctly dispatch messages
to the implementation’s various methods.

#!/usr/bin/env python
import sys
from ZSI.ServiceContainer import AsServer
from WolframSearchService_services_server import *

class Service(WolframSearchService):

def soap_WolframSearch(self, ps):
rsp = WolframSearchService.soap_WolframSearch(self, ps)
msg = self.request

t1 = time.time()
opts = msg.Options

rsp.Result = result = rsp.new_Result()
if opts.Query == ’Newton’:

result.TotalMatches = 1
result.Matches = match = result.new_Matches()
item = match.new_Item()
item.Title = "Fig Newtons"
item.Score = 10
item.URL = ’http://www.nabiscoworld.com/newtons/’
match.Item = [item]

result.SearchTime = time.time() - t1

return rsp

if __name__ == "__main__" :
port = 8080
AsServer(port, (Service(’test’),))

The ZSI.ServiceContainer.AsServer function is a convenient way to start a HTTP server that will dispatch
to your various services. In a container all services should have unique paths, here the service is available at ”test”. A
URL to contact this service at port 8080 would be http://localhost:8080/test

12 Chapter 3. Using ServiceContainer with wsdl2dispatch

APPENDIX

A

Wsdl2py script

A.1 Command Line Flags

usage: wsdl2py [options]

A.1.1 General Flags

-h, —help Display the help message and available command line flags that can be passed to wsdl2py.

-f FILE, —file=FILE Create bindings for the WSDL which is located at the local file path.

-u URL, —url=URL Create bindings for the remote WSDL which is located at the provided URL.

-x, —schema Just process a schema (xsd) file and generate the types mapping file.

-d, —debug Output verbose debugging messages during code generation.

-o OUTPUT DIR, —output-dir=OUTPUT DIR Write generated files to OUTPUT DIR.

A.1.2 Typecode Extensions (Stable)

-b, —complexType (more in section) Generate convenience functions for complexTypes. This includes getters, set-
ters, factory methods, and properties. ** Do NOT use with –simple-naming **

A.1.3 Development Extensions (Unstable)

-a, —address WS-Addressing support. The WS-Addressing schema must be included in the corresponding WSDL.

-w, —twisted Generate a twisted.web client. Dependencies: python>=2.4, Twisted>=2.0.0, TwistedWeb>=0.5.0

-l, —lazy recursion error solution, lazy evalution of typecodes

A.1.4 Customizations (Unstable)

-e, —extended Do extended code generation.

-z ANAME, —aname=ANAME Use a custom function, ANAME, for attribute name creation.

-t TYPES, —types=TYPES Dump the generated type mappings to a file named, “TYPES.py”.

-s, —simple-naming Simplify the generated naming.

13

-c CLIENTCLASSSUFFIX, —clientClassSuffix=CLIENTCLASSSUFFIX The suffic to use for service client
class. (default “SOAP”)

-m PYCLASSMAPMODULE, —pyclassMapModule=PYCLASSMAPMODULE Use the existing existing type
mapping file to determine the “pyclass” objects to be used. The module should contain an attribute, “mapping”,
which is a dictionary of form, schemaTypeName: (moduleName.py, className).

14 Appendix A. wsdl2py script

APPENDIX

B

Wsdl2dispatch script

B.1 Command Line Flags

usage: wsdl2dispatch [options]

B.1.1 General Flags

-h, —help Display the help message and available command line flags that can be passed to wsdl2py.

-f FILE, —file=FILE Create bindings for the WSDL which is located at the local file path.

-u URL, —url=URL Create bindings for the remote WSDL which is located at the provided URL.

-d, —debug Output verbose debugging messages during code generation.

-o OUTPUT DIR, —output-dir=OUTPUT DIR Write generated files to OUTPUT DIR.

B.1.2 Development Extensions (Unstable)

-a, —address WS-Addressing support. The WS-Addressing schema must be included in the corresponding WSDL.

B.1.3 Customizations (Unstable)

-e, —extended Do extended code generation.

-s, —simple-naming Simplify the generated naming.

-t TYPES, –types=TYPES file to load types from

15

	1 Introduction
	1.1 Acronyms and Terminology
	1.2 Overview
	1.2.1 soap bindings
	1.2.2 python tools
	wsdl2py
	wsdl2dispatch

	1.3 Not Covered
	1.4 References

	2 WSDL to Python Code
	2.1 wsdl2py
	2.1.1 Basics of Code Generation
	client stub module
	types module
	understanding the generated typecodes

	2.1.2 Typecode Extensions
	--complexType

	2.2 Code Generation from WSDL and XML Schema
	2.2.1 Example Use of Generated Code

	3 Using ServiceContainer with wsdl2dispatch
	3.1 running the script
	3.2 class ServiceInterface
	3.3 service skeleton
	3.4 service implementation

	A wsdl2py script
	A.1 Command Line Flags
	A.1.1 General Flags
	A.1.2 Typecode Extensions (Stable)
	A.1.3 Development Extensions (Unstable)
	A.1.4 Customizations (Unstable)

	B wsdl2dispatch script
	B.1 Command Line Flags
	B.1.1 General Flags
	B.1.2 Development Extensions (Unstable)
	B.1.3 Customizations (Unstable)

